
Abstract. In real space, the partitioning of a molecule
into valence and core regions is rooted in the picture of
`valence electrons' in the ®eld of `e�ective cores'
consisting of nuclei partially shielded by inner-shell
`core' electrons. The appropriate valence kinetic and
potential energies, T v and V v, respectively, are obtained
by subtracting the pertinent parts associated with the
cores from the corresponding conventional total T and
V energies but, far from T v � V v, the physically correct
valence-region energy is Ev � 1

3 �T v � 2V v�. This result
di�ers markedly from T v � V v because Ev, T v and V v do
not obey the virial theorem.

Key words: Molecules ± Core-valence partitioning ±
Valence energy

1 Introduction

The partitioning of ground-state atoms or ions into
inner spherical cores with radius rb and outer valence
regions extending from rb to in®nity surely o�ers a
direct, vivid way of separating core and valence electrons
in real space [1]±[4]. The number of core electrons, N c, is
then

N c � 4p
Z rb

0

r2q�r�dr;

where q�r� is the electron density1 at a distance r from
the nucleus with charge Z. The number of valence
electrons, Nv, found beyond the boundary surface
de®ned by rb is given by a similar integral, but spanning
from rb to in®nity. The proper de®nition of N c (and thus
of N v) ultimately depends on that of rb. N c � 2 e or
N c � 2 and 10 e for the ®rst- or second-row elements,
respectively, turn out to be the only acceptable solutions.

The valence-region energy ± i.e., with a change in sign,
the energy required to remove the valence electrons ± is

Ev � 1

3
�T v � 2V v� ; �1�

where T v and V v are, respectively, the kinetic and
potential energies of the Nv valence electrons. For the
ion left behind after removal of the valence electronic
charge we get

Eion � 1

3
�T c � 2�V c

ne � V cc
ee ��; �2�

where T c is the kinetic energy of the N c core electrons,
V c
ne their nuclear-electronic potential energy and V cc

ee their
interelectronic repulsion. Equations (1) and (2) were
successfully tested both at the SCF level, near the
Hartree±Fock limit [1, 3], and in non-relativistic post-
Hartree±Fock calculations [4], using extensive compar-
isons with experimental ionization potentials.

Here we wish to show that the same real-space for-
mulas apply to molecules as well, but V v must be rede®ned
since it must now incorporate the internuclear repulsion
energy, Vnn, and also accommodate usually more than
one single core. As concerns Eion and the terms appearing
in Eq. (2), however, they need not be rede®ned. With
Eion

k for the energy of the kth ionic core (say, H�, C�4,
N�5, O�6) and E for the molecule ± all energies refer-
ring to ground states ± the valence energy Ev under
consideration satis®es the important constraint

E � Ev �
X

k

Eion
k : �3�

So we begin with Ev, in real space. Then, for the purpose
of setting our approach in perspective, we discuss its
relation to the familiar methods in orbital space. Finally,
we examine the relative merits of the two models.
Motivation is drawn from the fact that real-space
philosophy largely governs popular atom-by-atom and
bond-by-bond descriptions of molecules, while current
core-valence separation schemes for molecules are
rooted in orbital-space theory, with no provision for
real-space applications. That should be remedied.1 We write q�r� � q�r� because of the assumed spherical symmetry

of the electronic density; see [5]
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2 Theory: the core-valence separation in real space

In writing Eq. (3) we assume that all particles, the
molecule and the ions, are at rest and that the molecule
is at its equilibrium geometry. The total energy of the
latter, E � hWjĤ jWi, is expressed in the Born±Oppen-
heimer approximation. Its derivative �oE=oZk�q at
constant electron density q with respect to the nuclear
charge of one of its nuclei is obtained with the help of the
Hellmann±Feynman theorem [6]. So we get the potential
at the center k, Vk=Zk � �oE=oZk�q, and the correspond-
ing potential energy

Vk � Zk�oE=oZk�q �4�

� ÿZk

Z
q�r�
jrÿ Rkj dr� Zk

X
l 6�k

Zl

Rkl
;

where q�r� is the electron density in the volume element
dr at the point r and Rk de®nes the position of nucleus
Zk. Rkl is the distance between nuclei with charges Zk and
Zl. Summation over all centers k givesX

k

Vk � Vne � 2Vnn; �5�

where Vnn �
P

k

P
l>k ZkZl=Rkl is the familiar internuclear

repulsion and

Vne � ÿ
X

k

Zk

Z
q�r�
jrÿ Rkj dr �6�

measures the nuclear-electronic attraction energy.
The molecule is taken in its equilibrium geometry.

So we apply the molecular virial theorem, 2E �
Vne � Vee � Vnn, where Vee is the interelectronic repulsion.
Using Eqs. (4) and (5) we get

2E ÿ
X

k

Zk
oE
oZk

� �
q

� Vee ÿ Vnn: �7�

On the other hand, in Hartree±Fock theory the total
energy is E �Pi miei ÿ �Vee ÿ Vnn�, where mi is the
occupation (0, 1 or 2) of orbital i with eigenvalue ei.
Combining this result with (7) to get rid of its �Vee ÿ Vnn�
part, we write

�3ÿ c�E �
X

i

miei; �8�

where c has been de®ned as2

c � 1

E

X
k

Zk
oE
oZk

� �
q
: �9�

Equations (4), (5) and (9) indicate that E �
cÿ1�Vne � 2Vnn� for a molecule. For isolated atoms, this
equation reduces to E � cÿ1Vne. Finally, for an atom k

embedded in a ground-state molecule, the corresponding
expression is [12±16]

Ek � 1

ck
Vk �10�

subject to the constraint that the average of the �1=ck�
values, weighted by Vk, must restore the 1=c of Eq. (9).
This de®nition of ck gives E �Pk Ek [3], [12]±[16], i.e.,
the result E � cÿ1�Vne � 2Vnn� indicated above.

The potential energy to be used in Eq. (10) is that
shown in Eq. (4). Now we rewrite Eq. (4) but introduce
two modi®cations. (1) We separate the nuclear-electro-
nic potential energy contributed by the core electrons
associated with Zk, which is V c

ne;k, from that due to all
the electronic charge found outside the core region of
atom k. (2) We consider that the core electrons asso-
ciated with Zk do interact with the charges found outside
that core. On the one hand, they repel these `external'
electrons and thus reduce their e�ective attraction by
nucleus Zk. This attraction by Zk and the concurrent
repulsion by N c

k play similar roles, one interaction op-
posing the other, and are considered jointly. On the
other hand, the core electrons N c

k attract the nuclei Zl . . .
and thus counteract the repulsion between Zk and the
other nuclei. These repulsions and counteracting at-
tractions also belong together. In short, the core elec-
trons not only screen the attraction between Zk and the
outer electrons but also screen the internuclear repulsion
involving Zk. The total screening imputable to N c

k is
written

V cv
k � interaction energy between the N c

k core electrons
and the electronic and nuclear charges found outside
the kth core containing Zk and N c

k .

The form of Eq. (4) that re¯ects this model is

Vk � ÿZk

Z 1
r
b;k

q�r�
jrÿ Rkj dr� Zk

X
l 6�k

Zl

Rkl
� V cv

k

" #
��V c

ne;k ÿ V cv
k �: �11�

So we go back to Eq. (10), use Eq. (11) and write Ek as

Ek � 1

cvk
ÿZk

Z 1
r
b;k

q�r�
jrÿ Rkj dr� Zk

X
l 6�k

Zl

Rkl
� V cv

k

" #

� 1

cck
�V c

ne;k ÿ V cv
k �; �12�

where the �1=ck� parameter of Eq. (10) is treated as the
average of 1=cvk (weighted by the term in brackets) and of
1=cck (with a weight of V c

ne;k ÿ V cv
k �. This description of Ek

is noncommital as to whether the ck of Eq. (10) suits the
individual core and valence parts. The ®rst part of the
right-hand side of Eq. (12) represents the valence-region
energy of atom k embedded in the molecule and the
second term is the energy, Eion

k � �V c
ne;k ÿ V cv

k �=cck, of the
ionic core k. The total energy E � RkEk is thus

E � 1

cv
X

k

ÿZk

Z 1
r
b;k

q�r�
jrÿ Rkj dr� Zk

X
l 6�k

Zl

Rkl
� V cv

k

" #
�
X

k

Eion
k ; �13�

2 The interest spurred by c is rooted in the fact that c � 7
3 is the

characteristic homogeneity of both Thomas±Fermi [7±9] and local
density functional theory [10], in which case one obtains the
Ruedenberg approximation, E � 3

2

P
i miei [11], and Politzer's

formula E � 3
7 �Vne � 2Vnn� [12], but the actual numerical value of

c is of no concern in the present context
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where 1=cv is the appropriate average of the individual
�1=cvk� values, weighted by the terms in brackets in
Eq. (13). The ®rst right-hand side term of Eq. (13)
describes the valence-region energy of a molecule, Ev.
Equation (13) is a form of Eq. (3).

Up to now, potential energies were at the center of
our attention. Little attention was paid to the electronic
kinetic energy. This situation arose from our application
of the Hellmann±Feynman theorem with intent to bring
out the role of the potential energies ± a role made ex-
plicit in Eq. (13) ± while the kinetic energy component
was seemingly neglected. In fact, it is somehow hidden in
cv. We shall now calculate cv and thus reintroduce ex-
plicitly the appropriate valence electronic kinetic energy
T v into the expression describing Ev.

Let us begin with Eq. (3) and write, with Eqs. (11) to
(13) in mind,

cE � cvEv � cc
X

k

Eion
k : �14�

[The right-hand side of Eq. (14) is, from Eqs. (12) and
(13) and comparison with Eq. (5), equal to Vne � 2Vnn,
which is cE.] Now use Eqs. (3) and (14) and write

�3ÿ c�E � �3ÿ cv�Ev � �3ÿ cc�
X

k

Eion: �15�

The �3ÿ c�E term is well known, Eq. (8). In the latter, mi
is the occupation of the orbital whose energy is ei. Here
we use mi � N c

i � N v
i , so that �3ÿ c�E �Pi N v

i ei�Pi N c
i ei. Consequently, we get from Eq. (15) that

�3ÿ cv�Ev ÿ
X

i

Nv
i ei

" #

� �3ÿ cc�
X

k

Eion
k ÿ

X
i

N c
i ei

" #
� 0: �16�

The latter equation achieves a separation of the core and
valence contributions. The terms in brackets are
certainly individually zero at the limits N c � 0 and
N v � 0. Here we postulate that physically meaningful
core populations exist that allow such a core-valence
separation and proceed with

�3ÿ cv�Ev �
X

i

N v
i ei �17�

for the valence region. Now we compare this expression
with the Ev appearing in Eq. (13), eliminate cv and
obtain

Ev � 1

3

X
k

ÿZk

Z 1
rb;k

q�r�
jrÿ Rkj dr� Zk

X
l6�k

Zl

Rkl
� V cv

k

 !"

�
X

i

Nv
i ei

#
: �18�

This formula can be simpli®ed. The ®rst term of its
right-hand side is V v

ne � Vne ÿ
P

k V c
ne;k, i.e., the total

nuclear-electronic potential energy of the molecule,
Eq. (6), stripped of all the individual core nuclear-elec-
tronic interactions, V c

ne;k. Next, we decompose
P

k V cv
k :

X
k

V cv
k � V cv

ee � 2V inter
ee � V inter

ne ; �19�
where V cv

ee is the repulsion between core and valence
electrons. V inter

ee is the core-other-core interelectronic
repulsion and V inter

ne is the core-other-nucleus attaction.
So we get from (18) that

Ev � 1

3
V v
ne � V inter

ne � V cv
ee � 2V inter

ee � 2Vnn �
X

i

N v
i ei

 !
:

�20�
Ev is almost in its ®nal form. The last step concernsP

i Nv
i ei.

Consider the Hartree±Fock equation F̂ /i � ei/i (in
conventional notation). Multiplication from the left by
/�i , integration over the space allotted to the valence
electrons and summation over all occupied orbitals i
leads toX

i

Z val

mi/
�
i F̂ /ids �

X
i

Z val

mi/
�
i ei/ids: �21�

The integral N v
i � mi

R val/�i /ids represents the number of
electrons of orbital i found in the valence region.
Equation (21) thus becomesX

i

Z val

mi/
�
i F̂ /ids �

X
i

Nv
i ei: �22�

The left-hand side of Eq. (22) will tell us what to use in
Eq. (20) instead of

P
i N v

i ei. As concerns the one-electron
terms, the integrals carried out solely over the valence
space yield the nuclear-electronic potential energy,
V v
ne ÿ V inter

ne , of the N v valence electrons plus the kinetic
energy, T v, of the same. As concerns the two-electron
integrals, the left-hand side of Eq. (22) collects all the
pertinent Coulomb and exchange terms between the
valence electrons and those assigned to the cores ± i.e.,
V cv
ee ± as well as the repulsions involving exclusively
valence electrons, V vv

ee . A double-counting of the latter
occurs during the summation over all is. Eventually we
get [1±3]X

i

Nv
i ei � T v � V v

ne ÿ V inter
ne � V cv

ee � 2V vv
ee : �23�

Finally, we use this expression in Eq. (20) and obtain

Ev � 1

3
T v � 2�V v

ne � V vv
ee � V cv

ee � V inter
ee � Vnn�

� �
: �24�

The sum V v
ee � V vv

ee � V cv
ee � V inter

ee represents the total
interelectronic repulsion stripped of all core contribu-
tions, i.e., Vee ÿ

P
k V cc

ee;k. We also de®ne

V v � V v
ne � V v

ee � Vnn: �25�
Equation (24) thus transforms to give Eq. (1). The
valence regions of molecules and isolated ground-state
atoms or ions are described by the same formula, Eq. (1).
For isolated atoms, of course, we use V inter

ee � 0,
V inter
ne � 0 and Vnn � 0.
Our formula for Eion, Eq. (2), proceeds from the same

general approach. Here we start o� with Eion
k � �1=cck�
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�V c
ne;k ÿ V cv

k �, introduce �3ÿ cc�Pk Eion
k �Pi N c

i ei [from
Eq. (16)] and follow the pattern outlined for Ev. Note
that Ev and Eion add up to E � 1

3 �T � 2V �, where T and
V are the total kinetic and potential energies, respec-
tively, of a ground-state atom or molecule with energy E.
Since the virial theorem applies in this situation, so that
E � 1

2 V , our formula reverts back to the familiar one,
E � T � V , for the entire system. Note, however, that
the virial theorem does not apply to the individual core
and valence subsystems.

The description presented here for the molecules is a
generalization of that o�ered earlier [1]±[4] for the atoms
and contains the latter as special case.

3 Interface with core-valence separations
in the orbital model

In the valence molecular calculations, one can decom-
pose the total molecular energy as follows:

E � Evalence � Ecore �
XX

k>l

ZkZl

jRk ÿ Rlj : �26�

Ecore is the energy contribution from the core orbitals. If
the latter are classi®ed according to the nuclear center on
which they are located (e.g., on nucleus k), the set of core
orbitals belonging to this center is f/c; c 2 kg. More-
over, if these core orbitals are assumed to be non-
overlapping, then the core energy may be partitioned
into two terms [17]:

Ecore � E�1�core � E�2�core: �27�
The one-center term

E�1�core �
X

k

X
c2k

2h/cj ÿ
1

2
r2 ÿ Zk

jrÿ Rkj j/ci
"

�
X
c2k

X
c02k

�2 Jcc0 ÿ Kcc0 �
#

�28�

is the sum of the Hartree±Fock core energies associated
with each center k, so that we can identify
E�1�core �

P
k Eion

k . The two-center term

E�2�core � 2
XX

k 6�l

X
c2l

h/cj ÿ
Zk

jrÿ Rkj j/ci

�
XX

k 6�l

X
c2k

X
c02l

�2 Jcc0 ÿ Kcc0 � �29�

collects the core-other-nucleus attraction terms as well as
the core-other-core repulsions. E�2�core vanishes when the
cores are in®nitely separated. At this point, a compar-
ison of Eq. (3) with Eq. (26) shows that

Ev � Evalence � E�2�core �
XX

k>l

ZkZl

jRk ÿ Rlj : �30�

Now we go along with an argument o�ered by Kahn
et al. [17]. In the evaluation of Eq. (29), and consistent
with the nonoverlapping core orbitals assumption, we
can neglect the core-other-core exchange interactions.
Because the core charge densities qk�r� � 2

P
c2k /�c

�r�/c�r� are spherically symmetric about their nuclear
centers and the cores are assumed to be nonoverlapping,
one obtains the approximation [17]

E�2�core �
XX

k>l

ZkZl

jRk ÿ Rlj �
XX

k>l

�Zk ÿ N c
k ��Zl ÿ N c

l �
jRk ÿ Rlj

�31�
and thus

Ev � Evalence �
XX

k>l

�Zk ÿ N c
k ��Zl ÿ N c

l �
jRk ÿ Rlj : �32�

In this approximation, the net e�ect of the core inter-
action energy is to shield the nuclear charges in the
internuclear repulsion energy.

Let us brie¯y state where we stand. Evalence is for oc-
cupied valence orbitals only and is simply represented by
the straight sum of their pertinent kinetic and potential
energies computed over the entire coordinate space. Ev,
in contrast, represented by 1

3 �T v � 2V v�, is for all occu-
pied orbitals but integrated only over speci®ed (core and
valence) regions of real space. The relationship between
the two, Evalence and Ev, is ± all things considered ±
surprisingly simple in view of the basic di�erences be-
tween the two models.

The evaluation of Ev ± e.g., with the help of Eq. (32) ±
presents no di�culty, but there is another, simpli®ed and
instructive form that catches our attention.

4 A simple approximation for Ev

In Thomas±Fermi theory, adoption of the central ®eld
model for neutral molecules at equilibrium leads to
simple energy relations ± well supported by accurate
SCF calculations [18] ± such as E � 3

7 �Vne � 2Vnn�, a
formula ®rst proposed by Politzer [12]. Evidently,
nothing of the like applies to Evalence, but we may well
inquire how things are with Ev.

The key is in the treatment of core-other-core and
core-other-nucleus interactions. Simple approximations
were presented in that matter to get Eq. (31). The same
arguments are now invoked for V cv

k , approximated as
follows:

V cv
k � N c

k

Z 1
rb;k

q�r�
jrÿ Rkj drÿ N c

k

X
l 6�k

Zl

Rkl
: �33�

The ®rst right-hand side term of (33) describes the
repulsion between N c

k , located at the point Rk, and all the
outer electrons. The second term describes the attraction
between N c

k and all the nuclei other than Zk. Eq. (13) now
becomes

Ev � 1

cv
X

k

ÿZeff
k

Z 1
rb;k

q�r�
jrÿ Rkj dr� Zeff

k

X
l 6�k

Zl

Rkl

" #
�34�

where Zk ÿ N c
k de®nes the e�ective nuclear charge Zeff

k .
The integral appearing in (34) runs over the entire space
outside the boundary rb;k, hence also over regions
containing the core electrons of the other nuclei.
Consider instead a `truncated' integral

R val
. . . dr that
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avoids systematically the core electrons of all atoms,
including N c

k , i.e.,Z 1
rb;k

q�r�
jrÿ Rkj dr �

Z val q�r�
jrÿ Rkj dr�

X
l 6�k

N c
l

Rkl

and rewrite (34) as follows:

Ev � 1

cv
X

k

ÿZeff
k

Z val q�r�
jrÿ Rkj dr� Zeff

k

X
l 6�k

Zeff
l

Rkl

" #
: �35�

Then note thatX
k

ÿZeff
k

Z val q�r�
jrÿ Rkj dr � V eff

ne �36�

appropriately describes the total e�ective nuclear-
electronic potential energy of the molecule, i.e., the
potential energy of its valence electrons ± and only those
± in the ®eld of the e�ective nuclear charges Zeff

k , Zeff
l , etc.

The summation of the nuclear repulsion terms in Eq. (35)
gives 2V eff

nn , where V eff
nn �

P
k

P
l>k Zeff

k Zeff
l =Rkl is the total

repulsion between Zeff
k , Zeff

l , etc. The ®nal result is thus

Ev � 1

cv
V eff
ne � 2V eff

nn

ÿ �
: �37�

This expression is reminiscent of Politzer's Thomas±
Fermi formula for molecules, E � 3

7 �Vne � 2Vnn�. It
describes chemical binding in the simplest possible
way, in terms of e�ective potentials at the nuclei.

5 Numerical examples

Table 1 reports selected CI results showing that addition
or withdrawal of one electron from an electroneutral
atom has little e�ect on the energy components of its
electronic cores. It thus seems a reasonable approxima-
tion to consider the neutral atom values as reference in
the forthcoming calculations. Table 2 reports the
pertinent GTO�5s 3p� results for use in conjunction with
molecular calculations carried out with Dunning's
GTO�5s 3pj3s� basis [21]. These results were obtained
from our real-space formula for Eion, Eq. (2).

Numerical Hartree±Fock calculations of E�1�core [23], on
the other hand, convincingly show that our results in real
space are the same as those of the orbital space model, Eq.
(28), and that we are thus justi®ed to write

Eion
k � E�1�core�k� �38�

for each individual center k. Pertinent E�1�core values from
Eq. (28) [23] are indicated in Table 2. These Hartree±
Fock results are indeed close to those given by Eq. (2).
Additional Hartree±Fock results are [23] ÿ75:4797 au
(F) and ÿ444:7455 au (Cl), compared with ÿ75:386 au
and ÿ446:153 au, respectively, from SDCI calculations
of Eion using Eq. (2) [4], and experimental values of
ÿ75:595 au, and ÿ446:356 au, respectively, from the
appropriate sums of ionization potentials. The identi®-
cation Eq. (38) is important because it su�ces to
establish the link between Ev and Evalence, Eq. (30),
deduced from Eqs. (3), (26) and (27). Moreover, if these
numerical results are now taken as a validation ±
without explanation, of course ± of our formula for
Eion, Eq. (2), it follows from Eq. (3) that Ev cannot but
have the form given in Eq. (1), with E � 1

3 �T � 2V � for
the total energy, which reverts to the standard formula
E � T � V with the use of the virial theorem.

The valence-region kinetic energy, T v, is readily ob-
tained by subtracting all the appropriate core kinetic
energies from the calculated SCF total kinetic energy.
Similarly, one obtains V v

ne from the total SCF nuclear-
electronic potential energy from which we subtract all
the pertinent core V c

ne terms. Finally, we deduce V v
ee from

the total SCF interelectronic repulsion energy, from
which we subtract the pertinent V cc

ee terms. The inter-
nuclear repulsion, Vnn, of course, is that obtained by
carrying out the usual optimizations of the total SCF
molecular energy. The ®nal results are displayed in Table
3. The `error', DE, represents the di�erence between our
calculation using Eqs. (3) and (1) and the SCF result: it
is positive whenever jV =T j > 2 and negative when
jV =T j < 2.

Let us now turn to Eq. (37). The nuclear and elec-
tronic potentials at the nuclei and the appropriate V c

ne
values give access to V cv

k through its approximation ex-
pressed in Eq. (33). So, the required internuclear repul-
sion energies being known, we can evaluate V eff

ne � 2V eff
nn

for use in Eq. (37). Finally, comparison with the corre-
sponding Ev values obtained from Eq. (1) enables the
evaluation of the cv parameters of Eq. (37). [The calcu-
lation of

P
k V cv

k is practical if we proceed as indicated in
Eq. (13). Alternatively, one can skip this step and use
Eq. (34) which is a form of Eq. (37).] Selected results are
given in Table 4.

Table 1. Kinetic and potential energies of core electrons of selected

atoms and ions, A, A� and Aÿ, for use in Eq. (2), atomic unitsa

Atom

or ion

T c V cc
ee V c

ne Eion calcd. Eion exptlb.

C� 35.4638 3.8308 ÿ70:3472 ÿ32:523 ÿ32:416
C 35.3696 3.8513 ÿ70:1708 ÿ32:423
Cÿ 35.2478 3.8510 ÿ70:0409 ÿ32:377
N� 49.8039 4.6395 ÿ96:8377 ÿ44:864 ÿ44:802
N 49.6647 4.6572 ÿ96:6275 ÿ44:759
Nÿ 49.5478 4:6568 ÿ96:5146 ÿ44:723
O� 66.7252 5.4741 ÿ127:6279 ÿ59:194 ÿ59:194
O 66.5554 5.4863 ÿ127:4102 ÿ59:098
Oÿ 66.4056 5.4861 ÿ127:2674 ÿ59:052
a SDCI results obtained [4] with the ANO (Atomic Natural Orbital)
�7s 6p 3d� basis given in [19]
b Taken as minus the appropriate sum of ionization potentials [20]

Table 2. Core energies of selected atoms, atomic unitsa

Atom T c V cc
ee V c

ne Eion E�1�core

C 35.3844 3.9253 ÿ70:1985 ÿ32:3873 ÿ32:3602
N 49.6513 4.7353 ÿ96:6647 ÿ44:7358 ÿ44:7339
O 66.6077 5.5665 ÿ127:4352 ÿ59:0432 ÿ59:1071
a SCF results obtained with Dunning's GTO�5s 3pj3s� basis [21]
The E�1�core energies are numerical HF evaluations of Eq. (28) [23]
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The 1=cv parameters introduced with Eq. (13) re-
present averages of individual `atomic' 1=cvk parameters
weighted by e�ective electronic and nuclear potential
energies, i.e., the terms in brackets shown in Eq. (34) or

(35) ± a situation similar to that prevailing in all-electron
applications of E � �1=c��Vne � 2Vnn�. In the latter case,
1=c (� 3=7) is the average of `atomic' 1=ck terms
weighted by the total potential energies Vk, Eq. (4), with
1=ck � 0:500 (H), 0.429 (C), 0.426 (N) and 0.422 (O)
[15]. Here, in our valence-region applications, we ®nd
`atomic' 1=cvk terms of 0.500 (H), 0.455 (C), 0.436 (N)
and 0.421 (O). On the basis of the present �5s 3pj3s� SCF
results alone, it is di�cult to judge conclusively how
accurate our approximations are, namely that proposed
for V cv

k , Eq. (33), but back-calculations using these 1=cvk
parameters and the appropriate SCF potential energies
shown in Eq. (34) reproduce the results given by Eq. (1)
typically within �0:15% or better, which seems accep-
table. Future, more accurate post-Hartree±Fock eva-
luations should reveal the full bearing of the Kahn±
Baybutt±Truhlar point-charge-potential simpli®cations
[17] introduced in Eq. (33) and thus in Eqs. (34) and (37).
The cv values of Table 4 show that while hydrogen tends
to lower them because of the non-negligible contribution
of 1=cvk � 0:500, the observed values are generally of the
order anticipated from Thomas±Fermi theory. This si-
tuation parallels that encountered in all-electron calcu-
lations of c [15].

6 Conclusions

The partitioning of the electronic charge of a molecule
into core and valence parts unfolds as a straightforward
extension of the methods applied to atoms. In real space
the valence-region energy, Ev, satis®es the constraint
E � Ev �Pk Eion

k , E being the total ground-state energy
of the molecule (or atom) under scrutiny and Eion

k that of
an ion k (such as H�, C�4, N�5, etc.) left behind upon
removal of the entire valence-region electronic charge.

Table 3. Application of Eqs.

(1) and (3) for selected molecules,

atomic unitsa

a SCF results obtained with the
GTO(9s 5pj6s� ! �5s 3pj3s� ba-
sis using Dunning's exponents
[21] and optimum contraction
vectors [22]
b Taken as the di�erence:
Ev �Pk Eion

k

ÿ �
minus Emol

SCF

Molecule T v V v
ne V v

ee Vnn Ev DEb

C2 4:6357 ÿ65:3522 32:0608 15:0712 ÿ10:6015 ÿ0:0140
CH4 4:8390 ÿ49:8395 22:1775 13:5245 ÿ7:8120 ÿ0:0120
C2H4 7:3098 ÿ108:0649 50:8928 33:6233 ÿ13:2626 ÿ0:0182
C2H6 8:4502 ÿ127:7946 59:6461 42:2663 ÿ14:4380 ÿ0:0030
C3H8 12.0952 ÿ228:8817 108.6595 82:5597 ÿ21:0765 ÿ0:0047
i-C4H10 15.7683 ÿ353:4116 169.3705 134.5693 ÿ27:7250 ÿ0:0155
i-C4H8 14.5551 ÿ320:7158 154.1553 119.4861 ÿ26:5311 ÿ0:0059
C6H6 18.3307 ÿ522:1176 255.1082 203.3607 ÿ36:3221 0:0047

N2 9:3840 ÿ107:7574 51:1787 22:8683 ÿ19:3456 0:0654

NH3 6:4401 ÿ58:4697 26:4138 11:7185 ÿ11:4116 0:0280
N2H2 10.7276 ÿ129:8056 61:2135 32:4678 ÿ20:5070 ÿ0:0257
N2H4 11.6968 ÿ149:7488 70:3847 41:0728 ÿ21:6286 0:0505

HCN 7:7719 ÿ98:2720 46:9096 23:9108 ÿ15:7104 0:0131

CH2N2 13.1203 ÿ204:4055 97:6572 61:2808 ÿ25:9382 ÿ0:0049
NH2CN 13.3304 ÿ202:4348 96:8968 59:7849 ÿ26:0586 ÿ0:0498
CH3CN 11.3545 ÿ186:4146 89:3394 57:8880 ÿ22:3400 0:0380

O2 16.2673 ÿ155:1460 72:2121 27:6771 ÿ31:4155 0:0098
H2O 9:4319 ÿ71:5823 32:2030 9:1950 ÿ16:9789 ÿ0:0087
CO 10.6469 ÿ112:1393 52:8103 22:1348 ÿ21:2472 0:0194

CO2 19.0035 ÿ234:4352 110.8640 58:4157 ÿ37:1025 ÿ0:0134
H2CO 11.8005 ÿ132:6016 62:1461 30:9690 ÿ22:3908 0:0145
CH3OH 13.0380 ÿ153:8342 71:7371 40:1893 ÿ23:5925 ÿ0:0034
(CH3)2O 16:6620 ÿ261:2893 123.8250 83:8112 ÿ30:2148 ÿ0:0028
(C2H5)2O 24.0549 ÿ515:2101 247.6725 190.2076 ÿ43:5350 ÿ0:0361
N2O 17.3578 ÿ226:8735 107.8693 57:8640 ÿ34:9742 0:1106

Table 4. Calculation of
P

k V cv
k and V eff

ne � 2V eff
nn and application of

Eq. (37) to get cv, atomic unitsa

Molecule
P

k V cv
k V eff

ne � 2V eff
nn cv

C2 11.7366 )23:4732 2.2141

CH4 6.1128 )16:6772 2.1349

C2H6 12.1784 )31:0835 2.1529

C3H8 18.2606 )45:5017 2.1589

i-C4H10 24.3511 )59.9218 2.1613

C2H4 12.1455 )28.6721 2.1623

i-C4H8 24.2924 )57.4512 2.1654

C2H2 12.0906 )26.2128 2.1823

C6H6 36.2814 )79.1149 2.1781

N2 17.7202 )44.3006 2.2900

NH3 9.1173 )25.9155 2.2710

N2H4 18.1233 )49.4800 2.2877

N2H2 17.9593 )46.9107 2.2875

HCN 14.9936 )35.4568 2.2569

CH2N2 23.6326 )58.2112 2.2442

NH2CN 23.9638 )58.9012 2.2603

CH3CN 20.9833 )49.6553 2.2227

O2 24.9479 )23.4732 2.3824

H2O 12.8120 )40.3821 2.3784

CO 18.4241 )49.4456 2.3272

CO2 30.7941 )86.8096 2.3397

H2CO 18.6000 )52.0636 2.3252

CH3OH 18.7830 )54.6725 2.3174

H2CCO 24.4384 )63.6231 2.2834

(CH3)2O 24.7477 )68.9192 2.2810

(C2H5)2O 36.9388 )97.8560 2.2478

N2O 29.9487 )81.1968 2.3216

a SCF results using the �9s 5pj6s� ! �5s 3pj3s� basis [21, 22]
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Ev thus includes whatever energy changes occur when
the `valence electrons' are added to the ions k forced into
adopting the equilibrium geometry of an incipient ground-
state molecule. So it justi®es, albeit in an unconventional
way, its designation `valence energy'.

For ion k it is shown that Eion
k � 1

3 �T c � 2�V c
ne � V cc

ee ��,
where T c is the kinetic energy of its N c core electrons, V c

ne
their nuclear-electronic potential energy and V cc

ee their
interelectronic repulsion. In SCF theory, on the other
hand, Eion is identi®ed with the appropriate sum of its
Hartree±Fock core energies. As a direct consequence,
the familiar orbital-space valence energy, Evalence, and
our real-space Ev energy are related to one another in a
straightforward manner, e.g., by the approximation
Ev � Evalence � V eff

nn that highlights the role of the repul-
sions between nuclei partially screened by their core
electrons. Evalence is the usual straight sum of the perti-
nent kinetic and potential energies of the occupied va-
lence orbitals computed over the entire coordinate space,
whereas Ev is for all occupied orbitals, but integrated
only over speci®ed (core and valence) regions of real
space. The relationship between Ev and Evalence o�ers
nothing beyond what seems most obvious on simple
physical grounds: the novelty is in the form,
Ev � 1

3 �T v � 2V v�, of the valence energy in our real-
space partitioning, where T v and V v are, respectively, the
relevant valence kinetic and potential energies.

Our description surely means that Ev accounts for
chemical binding, which makes it particularly attractive
in real-space applications to molecules. Indeed, any
atom-by-atom or bond-by-bond partitioning of a
molecule ± such as Bader's atom-in-the-molecule model
[24] ± is by its very nature treated in real space. In this
particular context, we surely bene®t from the fact that
our real-space core-valence partitioning correctly re¯ects
chemical binding. Its formulation with intent to de®ne
bond energies [3,14] or the energies of `atoms-in-the-
molecule' [24], however, meets with the usual di�culties
that are encountered when it comes down to fairly dis-
tributing interelectronic and internuclear repulsion terms
among chemical bonds or `atoms in the molecule': these
terms are not simply separable into atomic or bond
contributions. And yet, with the help of our Thomas±
Fermi-like approximation Ev � �1=cv��V eff

ne � 2V eff
nn �, we

get round this sort of problem, as Ev is then expressed
solely in terms of the appropriate e�ective potentials at
the individual nuclei, which raise no partitioning-related
problems. The new problem ± namely that brought up
by 1=cv ± can be solved (in principle) remembering that
this parameter is a weighted average of atomic 1=cvk

terms which can be treated, at least to a good approx-
imation, as constants for each type of atom k.

In short, our core-valence partitioning in real space
o�ers the advantage of being naturally best suited in
problems concerned with real-space atom-by-atom de-
compositions of molecules. Yet, though serving di�erent
purposes, and however di�erent they may seem, real-
space and orbital-space core-valence separations appear
for what they are: two facets of the same reality.
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